Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Increasing warming and drought severity are projected for the Pacific Northwest (PNW) and are expected to negatively impact species composition and ecosystem function. In this study, we test the hypothesis that the impact of climatic stress (i.e., experimental warming and drought) on PNW grasslands are mediated by interactions between plant functional diversity and soil biogeochemical processes, including symbiotic nitrogen (N) fixation in legumes and free‐living asymbiotic nitrogen fixation (ANF) by soil microorganisms. To test this hypothesis, we measured the response of plants and soils to three years of warming (+2.5°C) and drought (−40% precipitation) in field experiments replicated at three different sites across a ∼520‐km latitudinal gradient. We observed interactive effects of warming and drought on functional diversity and soil biogeochemical properties, including both positive and negative changes in ANF. Although direct measurements of symbiotic nitrogen fixation (SNF) rates were not conducted, the observed variations in ANF, in conjunction with changes in legume cover, suggest a compensatory mechanism that may offset reductions in SNF. Generally, high ANF rates coincided with low legume cover, suggesting a connection between shifts in species composition and N cycling. Our ANF estimates were performed using isotopically labeled dinitrogen (15N2) in tandem with soil carbon (C), phosphorus (P) and iron (Fe), pH, and moisture content. Along the latitudinal drought severity gradient, ANF rates were correlated with changes in species composition and soil N, P, moisture, and pH levels. These results highlight the importance of soil‐plant‐atmosphere interactions in understanding the impacts of climatic stress on ecosystem composition and function.more » « less
-
Abstract Does drought stress in temperate grasslands alter the relationship between plant structure and function? Here we report data from an experiment focusing on growth form and species traits that affect the critical functions of water‐ and nutrient‐use efficiency in prairie and pasture plant communities. A total of 139 individuals of 12 species (11 genera and four families) were sampled in replicated plots maintained for three years across a 520 km latitudinal gradient in the Pacific Northwest, USA. Rain exclusion did not alter the interspecific relationship between foliar traits and stoichiometry or intrinsic water‐use efficiency (iWUE). Rain exclusion reduced iWUE in grasses, an effect was primarily species‐specific, although leaf morphology, life history strategy, and phylogenetic distance predicted iWUE for all 12 species when analyzed together. Variation in specific leaf area explained most of the variation in iWUE between different functional groups, with annual forbs and annual grasses at opposite ends of the resource‐use spectrum. Our findings are consistent with expected trait‐driven tradeoffs between productivity and resource‐use efficiency, and provide insight into strategies for the sustainable use and conservation of temperate grasslands.more » « less
-
Abstract Methane (CH4) is a potent greenhouse gas (GHG) with atmospheric concentrations that have nearly tripled since pre‐industrial times. Wetlands account for a large share of global CH4emissions, yet the magnitude and factors controlling CH4fluxes in tidal wetlands remain uncertain. We synthesized CH4flux data from 100 chamber and 9 eddy covariance (EC) sites across tidal marshes in the conterminous United States to assess controlling factors and improve predictions of CH4emissions. This effort included creating an open‐source database of chamber‐based GHG fluxes (https://doi.org/10.25573/serc.14227085). Annual fluxes across chamber and EC sites averaged 26 ± 53 g CH4m−2 year−1, with a median of 3.9 g CH4m−2 year−1, and only 25% of sites exceeding 18 g CH4m−2 year−1. The highest fluxes were observed at fresh‐oligohaline sites with daily maximum temperature normals (MATmax) above 25.6°C. These were followed by frequently inundated low and mid‐fresh‐oligohaline marshes with MATmax ≤25.6°C, and mesohaline sites with MATmax >19°C. Quantile regressions of paired chamber CH4flux and porewater biogeochemistry revealed that the 90th percentile of fluxes fell below 5 ± 3 nmol m−2 s−1at sulfate concentrations >4.7 ± 0.6 mM, porewater salinity >21 ± 2 psu, or surface water salinity >15 ± 3 psu. Across sites, salinity was the dominant predictor of annual CH4fluxes, while within sites, temperature, gross primary productivity (GPP), and tidal height controlled variability at diel and seasonal scales. At the diel scale, GPP preceded temperature in importance for predicting CH4flux changes, while the opposite was observed at the seasonal scale. Water levels influenced the timing and pathway of diel CH4fluxes, with pulsed releases of stored CH4at low to rising tide. This study provides data and methods to improve tidal marsh CH4emission estimates, support blue carbon assessments, and refine national and global GHG inventories.more » « less
An official website of the United States government
